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132 SOLUTIONS OF PROBLEMS. 

Also solved by H. N. CARLETON, J. E. ROWE, L. C. MATHEWSON, A. H. 
HOLMES, ELIJAH SWIFT, 0. S. ADAMS, J. ROSENBAUM, LOUIS CLARK, E. E. 
WHITEFORD, and H. S. UHLER. 

241. Proposed by CLIFFORD N. MILLS, Brookings, S. Dak. 
If a2 + b2 = c2, where a, b, and c are integers, then prove that abc will be a multiple of 60. 

SOLUTION BY ALBERT G. CARIS, Defiance College. 
From the well-known theorem that any integral solution of a2 + b2 = c' may be put in 

the form 2xy, X2 - y2, X2 + y2, where x and y are integers, it follows immediately that 
abc = 2xy(x- y)(x + y)(X2 + y2). 

Showing that this product is always a multiple of 3, 4, and 5 is sufficient to prove the proposed 
problem. 

I. We may write x = 2m - 1, or 2m and y = 2n - 1, or 2n, where m and n are integers. 
Whenever x = 2m, or y = 2n, abc is a multiple of 4. In all other cases x = 2m - 1 at the same 
time that y = 2n - 1 and consequently, x - y, x + y, and x2 + y2 are all multiples of 2. 

Therefore abc is always a multiple of 4. 
I. We may write x =3r-1, 3r, or 3r + 1 and y = 3s-1, 3s, or 3s + 1, where r and s 

are integers. Whenever x = 3r, or y = 3s, abc is a multiple of 3. The combinations resulting 
from all other cases may be arranged in the two groups below: 

Group A Group B 
x y x y 

3r-1 3s-1 3r-1 3s+1 
3r + 1 3s + 1 3r + 1 3s-1 

From combinations of group A the factor x - y = 3 (r - s). From combinations of group B 
the factor x + y = 3 (r + s). Therefore abc is always a multiple of 3. 

III. We may write 
x = 5u-2, 5u-1, 5u, 5u + 1, or 5u + 2 

and 
y = 5v -2, 5v -1, 5v, 5v + 1, or 5v + 2, 

where u and v are integers. Whenever x = 5u, or y = 5v, abc is a multiple of 5. The combina- 
tions resulting from all other cases may be arranged in the three groups below: 

Group C Group D Group E 
x y x y x y 

5u-2 5v-2 5u-2 5v+2 5u42 5v41 
5u-1 5v-1 5u-1 5v+1 
5u + 1 5v + 1 5u + 1 5v-1 5u 4 1 5v i 2 
5u + 2 5v + 2 5u + 2 5v + 2 

All combinations of group C make x - y = 5(u - v). All combinations of group D make 
x + y = 5(u + v). All combinations of group E make X2 + y2 = 5(5u2 ? 4u + 5V2 ? 2v + 1) 
or 5(5u2 i 2u + 5V2 i 4v + 1). Therefore, abc is always a multiple of 5. Hence, abc is always 
divisible by 60. 

Also solved by S. A. COREY, A. H. HOLMES, HORACE OLSON, J. W. CLAWSON, 
J. ROSENBAUM, J. E. ROWE, H. C. FEEMSTER, H. N. CARLETON, W. J. THOME, 
ELIJAH SWIFT. and E. E. WHITEFORD. 

243. Proposed by CLIFFORD N. MILLS, Brookings, South Dakota. 
Determine rational values of x that will render X3 + pX2 + qx + r a perfect cube. Apply 

the result to x3 - 8x2 + 12x - 6. 
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SOLUTION BY E. B. ESCOTT, Kansas City, Mo. 
Let x3 + px2 + qx + r = (x + a)3. Expanding and collecting terms 

(1) (3a-p)x2 + (3a2-q)x + (a3- r) = 0. 

If x is rational, the discriminant must be a square, that is, 

(2) (3a2 - q)- - 4(3a - p)(a3- r) = d2. 
One simple solution is a = p/3. 

Then from (1), we get 
p3 --r a3 -r 27 p3-27r 

(3) x = -3a2 q p2 9(p2 - 3q) 

Other solutions of (2) may be found by Euler's method. Expanding (2), we have 
- 3a4 + 4pa3 - 6qa2 + 12ra + (q2 - 4pr) = d2. 

If we know one solution, we can usually find as many as desired. 
Applying the above results to x3 - 8x2 + 12x - 6, we have p = -8, q = 12, r = -6. 

By (3), we have x = 25/18. (2) becomes (3a2 - 12)2 - 4(3a + 8)(a3 + 6) = d2; or, expanded, 

-3a4 - 32a3 - 72a2 - 72a - 48 = d2. 

a = -2 is a solution, which gives x = ? 1. Let a = b -2. Then, 
- 3b4 - 8b3 + 48b2 - 72b + 16 = = (kb2 + lb + m)2. 

Expanding, 
(k2 + 3)b4 + 2(kl + 4)b3 + (2km + 12 - 48)b2 + 2(lm + 36)b + (m2 -16) = 0. 

Let m = 4, = -9, k =-33/8. Then 

b= - 
2(kl + 4) 752 1118 
k2 + 3 183 and183 

Substituting in (1), we have 
51287 1895 

x 8235 and 

Another value of a is - 8, whence x = 23/4 and 11/2. Also 
632 74 5738 

a = --, 3 18 

The corresponding values of x are easily found. 

Also solved by ELIJAH SWIFT, NORMAN ANNING, J. A. COLSON, and J. E. 
ROWE. 

Editorial Note.-The problem in effect is to find rational points on the cubic 
x3 + pX2 + qx + r -3 = 0. 

If the discriminant of X3 + pX2 + qx + r vanishes this cubic is rational and an infinity of rational 
points may be found by the method of section by a line through the double point. If not it is a 
cubic of one branch and genus 1. The theory of the rational points has been discussed by H. 
Poincare, Liouville Journal, 1901, 161. 
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